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SECTION 1 

INTRODUCTION 

e 

a 
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* 
The primary goal of this grant is to investigate the use and implementation of Ada in 

distributed environments in which reliability is the primary concern. In particular, we are 

concerned with the possibility that a distributed system may be programmed entirely in Ada so 

that the individual tasks of the system are unconcerned with which processors they are executing 

on, and that failures may occur in the software or underlying hardware. A secondary interest is in 

the performance of Ada systems and how that performance can be gauged reliably. 

Over the next decade, it is expected that many aerospace systems will use Ada as the 

primary implementation language. This is a logical choice because the language has been 

designed for embedded systems. Also, Ada has received such great care in its design and 

implementation that it is unlikely that there will be any practical alternative in selecting a 

programming language for embedded software. 

The reduced cost of computer hardware and the expected advantages of distributed 

processing (for example, increased reliability through redundancy and greater flexibility) indicate 

that many aerospace computer systems will be distributed. The use of Ada and distributed 

systems seems like a good combination for advanced aerospace embedded systems. 

A distributed system is only as reliable as its weakest node. For example, if each of three 

. computers in a system will operate correctly 99 percent of the time, the complete system will 

function, on average, only approximately 97 percent of the time. If a node has failed, however, a 

distributed system has the potential to continue providing service since some hardware facilities 

remain. Continuation will make these systems more reliable than single-processor architectures. 

* Ada is a trademark of the US. Department of Defense 
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In order to be truly useful from a reliability standpoint, however, distributed systems must be 

safe: they should provide a level of service after failure which reflects the reduction in computing 

power and does not jeopardize the fundamental purpose of the application. Post-failure operation 

could take the form either of ongoing but reduced service (as in an aircraft control system) or of a 

timely, controlled shutdown (as in a nuclear power plant). 

Such real-time control applications as are found in the defense and aerospace industries 

often require very high reliability, so toleration of hardware failures can be extremely important. 

We designate such applications to be crucial in that their failures may cause human lives to be 

endangered or enormous sums of money to be wasted. 

A concern that is emerging, however, is the performance that might be achieved from Ada 

implementations. Initial performance measures indicate that there is considerable variability 

btween implementations and between different types of program on the same implementation. 

Programmers have expressed concern that, although Ada may allow software to be developed 

with fewer faults, the execution-time performance may make the use of Ada impractical. 

In previous work under this grant we have shown the general inadequacy of Ada for 

programming systems that must survive processor loss. We have also proposed a solution to the 

problem in which there are no syntactic changes to Ada. We felt confident that the solution was 

adequate but could not be sure until the solution was tested. A major goal of this grant therefore 

was and is to evaluate the approach using a full-scale, realistic application. The application we 

are using is the Advanced Transport Operating System (ATOPS), an experimental computer 

control system developed at NASA Langley for a modified Boeing 737 aircraft. The ATOPS 

system is a full authority, real-time avionics system providing a large variety of advanced 

features. 

e 
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The preliminary evaluation lead us to conclude that the approach was indeed workable. We 

, documented the preliminary results in a paper presented at the 1987 Washington DC Ada 

symposium. That paper has been supplied to the sponsor under separate cover. Although 

workable, various deficiencies in style and flexibility were noted and a new approach was devised 

that is far more useful than the original. A preliminary discussion of that approach is presented in 

sections 2.3,  and 4 of this report. 

In a new effort under this grant we have begun work to provide performance analysis of 

Ada implementations. Our goal is to supply the system designer with tools that will allow a 

rational decision to be made about whether a particular implementation can support a given 

application early in the design cycle. A commitment to the use of Ada is viewed as a substantial 

risk by most project managers mainly because of unknown performance, and if this risk could be 

reduced it would enhance the use of Ada considerably. A discussion of this project on 

performance has been supplied to the sponsor under separate cover. 

Thus, during this grant reporting period our primary activities have been: 

Analysis of the original approach to recovery in distributed Ada programs using the ATOPS 

example. 

Review and assessment of the original approach which was found to be capable of 

improvement. 

Preparation and presentation of a paper describing this work at the 1987 Washington DC 

Ada Symposium. 

Development of a refined approach to recovery that is presently being applied to the 

ATOPS example. 

e - 3 -  



* (5)  Design and development of a performance assessment scheme for Ada programs based on a 

flexible user-driven benchmarking system. 

A list of papers and reports prepared under this grant, other than the annual and semi-annual 

progress reports, is presented in the Appendix. 
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ANALYSIS OF PREVIOUS APPROACH 
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Ada [l] has been designed for programming crucial, real-time applications and for the 

development of programs distributed over multiple computers. Unfortunately, we have shown it 

to be deficient in three areas [2]. First, the Ada Language Reference Manual (LRM) fails to 

specify adequately the facilities available to a programmer who wishes to control the distribution 

of the various elements of a program. Second, the LRM lacks any clear definition of the meaning 

of a distributed Ada program. Specification of the basic units of distribution, whether they be 

individual statements, tasks, packages, or anything else, is absent from the document. Third, the 

LFW does not define the state of a distributed program after the loss of a portion of its computing 

environment. The implication is that the Ada machine does not fail. 

In short, Ada lacks both distribution and failure semantics. As a result, no way exists of 

ensuring that one distributed Ada implementation is compatible with another. Worse still, the 

problem is not simply one of defining a standard set of semantic enhancements: the issues are 

difficult and controversial as well. 

With the notion that the Ada machine does not fail in mind, some researchers have 

proposed a transparent [3] approach to continuation in which an application program is unaware 

of the fault-tolerant capabilities of the system. Loss of a processing node would cause automatic 

reconfiguration of the system, and the reconfiguration would be invisible to the program. The 

burdens of recovery and of the preparation needed for that recovery devolve upon the execution- 

time environment. Because this approach does not allow the application program to be aware of 

failure or of reconfiguration, the level of service provided after the failure must be identical to 

that provided during normal operation. Programs that provide transparent continuation require 
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extra computing power in order to operate as desired after a failure. Also, because the 

, continuation facilities cannot be tailored to the real needs of the application, the transparent 

approach incurs substantial overhead. 

In a paper prepared under this grant [2], we have suggested a method by which system 

designers can specify explicitly the service to be offered following node failure. This allows for 

the specification of degraded service in systems which, due to lack of computing power, cannot 

provide full functionality after a hardware failure. In addition, with this approach designers 

control the normal operational overhead required to prepare the software for an arbitrary 

hardware fault. This overhead consists primarily of transmissions of critical data items required 

during reconfiguration to bring the system to a consistent state. This method is termed the non- 

transparent approach to tolerating the loss of a processor in a distributed system. 

We are convinced that only a non-transparent continuation strategy is appropriate for real- 

time applications which have stringent performance constraints. On a military aircraft, for 

example, there may not be enough power to double the number or size of the computers in order 

C U  yluvlub l l ( u u w ~ c  ~ ~ L U L  c u l t ; ~ ~ ~ .  'iiicre may nor even be sufficient physical space and weight 

may be limited. 

*m ---..:A- L--A--...-- e----* * - * - - - - - - -  

We are now equally convinced that the semantics proposed in the original approach to 

provide the capacity to construct fault-tolerant programs are insufficient and unnecessarily 

unwieldy. Our objections to that approach are detailed fully in the next section. Basically, we 

have settled upon a compromise, defined and supported in the next section, between the 

programming convenience, inflexibility, and high overhead of transparent continuation and the 

complexity, flexibility and low overhead of non-transparent continuation. 

In the remainder of this section, we define three basic assumptions about the hardware 

architectures that we consider in the remainder of this report and we also define some basic 

- 6 -  
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qualities of the software architectures with which we are concerned. In the next section, we 

describe the revised semantic enhancements to Ada which we deem necessary for the 

consmction of fault-tolerant software. In section 4, we describe the criteria according to which 

we evaluate applications of the suggested semantics. In section 5, we develop a software 

construction strategy which employs the proposed semantics. 

Assumptions 

In order to focus on the basics of the fault toleration method at hand, we make three 

simplifying assumptions. First, for the following three reasons, we assume that the system is 

fully connected: 

No connective exclusivity. Fault-tolerant design of systems whose individual 

nodes have exclusive I/O or internode connections is difficult if not impossible. 

After failure of a node with exclusive access to the effectors, for example, the 

remainder of an aircraft control system must proceed without control over the 

aircrait surfaces. 

Low network costs. Fiber-optic technology is making fast, inexpensive networks 

available to everyone. With a crucial system, the additional network cost of full 

connection should always be much lower in priority than the benefits of fault 

tolerance. 

Flexibility. A fully connected system has the property that each node in the system 

sees the same environment. All processes, including those which communicate 

with the outside world, can, theoretically, be redistributed with impunity. This 

inhcrent lack of distribution constraints allows us to examine more easily the effects 

of software continuation mechanisms on overall distribution flexibility. 

- 7 -  
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Our second assumption is that the system is a homogeneous collection of processors. This 

simplifies the problem of fault toleration in two ways: 

(1) No special-purpose processors. We recognize the need for special purpose 

processors in certain distributed systems. For example, a system might have only 

one node which contains floating point hardware. The designers have to make 

allowances in their recovery plan for the extra lost processing power if the 

“special” node fails. This is not a trivial consequence of using special-purpose 

processors, because we will show later that providing the same level of service after 

. any node failure simplifies the problem significantly. We feel justified in ignoring 

the issue for two reasons. First, the problem is not specific to our brand of fault 

tolerance; a special-purpose machine should be replicated in any system which 

cannot survive its loss. Second, a crucial system, one for which failure is 

unacceptable, should always be funded well enough to provide such replication. 

I. 

No portability problems. One of the major concerns with distributed software is 

flexibility. Ideally, addition of a processing node in response to increased 

computing needs should require of the software no more than alteration of the 

distribution directives. Heterogeneous systems, those whose nodes are not 

identical, must cope not only with redistribution but also with portability. Because 

of compiler-specific pragmas, we do not anticipate portability of Ada programs to 

be perfect; however, the requirement that Ada compilers be validated in order to be 

licensed should cause portability costs to be low. We surmise that software 

portability will not be affected unduly by the fault toleration requirement because 

we expect portability to be a function mostly of compiler quality and consistency. 

At any rate, we are not equipped currently to measure portability, so we will avoid 

the issue for the time being. 

- 8 -  
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In sum. we are concerned with the ideal distributed targets. These are systems which have 

homogeneous communication and processing structures. We realize that many crucial, real-time 

systems will operate on more idiosyncratic targets; however, we believe that these simplifications 

allow us to focus on issues we consider more fundamental. Additionally, we have argued in this 

section that the crucial aspects of the systems for which fault toleration is a necessity make it 

reasonable to expect that the benefits of target homogeneity be purchased. Figure 1 depicts this 

general target architecture in the context of our example application. 

V 

Our third assumption is that most systems will only need to tolerate a single, arbitrary node 

failure. We expect that the hardware for these crucial systems will be extremely reliable, and we 

V 

believe that in many cases the probability of simultaneous failure will be acceptably low. A key 

exception is physical damage. If a bomb explodes on an aircraft, the probability of damage to 

multiple nodes is much higher than could be predicted by the mean times to failure of the 

0 

Figure 1 - Distributed Architecture 
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a 
computers being used. In systems which are deemed susceptible to physical damage, the 

software requirements may reasonably dictate that some service must be provided even if only 

one computer remains after a damage incident. By no means do we rule out the use of the 

semantics defined in the next section for systems that must tolerate multiple failures; however, 

because of limited resources and in the interests of brevity and simplicity, we do not examine 

such cases in this research. 

Intended Class of Applications 

What follows is not so much a definition of red  time as it is a description of what we mean 

e 

by the term in this research. Typically. in real-time applications, required functions fall into one 

of two classes. Some functions need to be executed on a particular real-time schedule, and the 

remainder may be executed in background. These functions, whether scheduled or background, 

usually operate in loops which terminate only when the entire system is shut down. Each 

scheduled function will be associated with a particular frame rate, and each scheduled function 

will execute once during each of its frames. The background functions will iterate whenever no 

scheduled functions are executing. 

Coordination of the activities of these various functions in time is the problem which 

distinguishes real-time applications from other programming endeavors. Most programs 

schedule activities from within. Input, computation, and output occur when the program itself 

decides, and repeated executions of the program with the same input set will yield identical 

output sets. Real-time programs, on the other hand, schedule according to external events. An 

external event can be either a clock interrupt or a burst of input which occurs according to some 

regular or irregular schedule. In either case, real-time programs must be prepared to respond 

immediately to new information from thc outside world, and, because the timing of events always 

vanes, no two executions of a real-time program will yield the same output set except in the most 

0 
10 - 



improbable of coincidences. 
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SECTION 3 

PREFERRED SEMANTIC ENHANCEMENTS 
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In a previous paper [2], Ada was shown to lack both distribution and failure semantics. The 

LRM does not define facilities to effect the distribution of a program on a multicomputer, 

boundaries on which such a partitioning may occur, or the state of a program after the loss of a 

portion of its computing environment. Appropriate semantic enhancements to the’language were 

proposed, and a simple strategy for the construction of fault-tolerant systems was outlined. From 

a software engineering perspective, that strategy lacks both expressive power and grace. Further, 

those limitations result from the proposed semantics. In this section, we suggest new semantic 

enhancements that allow for the construction of fault-tolerant programs that meet modem 

software engineering standards. 

a 

Distribution Semantics 

0 In the previously defined approach to continuation, programs must be partitioned along task 

boundaries. A distributed program would consist of an empty main program and a collection of 

tasks. Comhill [3] details an important objection to this strategy: 

Unless we discover that there is something intrinsic to software for distributed systems which 
causes tasks to exist precisely where we need them for partitioning, we burden the developer 
with rules that go beyond those specified in the LRMI. The effect of these additional rules is to 
define an Ada subset, since only certain legal Ada programs, those that conform to the additional 
rules, can be executed on a distributed system. 

0 
The original reason for the limitation to partitioning only on task boundaries was that Ada tasking 

semantics can be more easily adapted to fault tolerance than can other portions of the language. 

0 
In principle, however, as far as the distribution semantics are concerned, we side with Comhill. 

Our preliminary attempts to implement the ATOPS application showed the semantics defined in 

* 12 - 
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the previous approach to continuation lead to particularly unwieldy structures. 

0 

0 

0 

One structural problem we came across results from the fact that packages, not tasks, are the 

Ada constructs that are responsible for defining the complex interfaces required for well- 

engineered solutions to real problems. Consequently, the requirement that tasks be the only 

partitionable units severely restricts proper application of modem software engineering 

techniques. Also, since global data is disallowed by the decision to make tasks the only 

distributable units and because the entries of dependent tasks are not easily madc visible in the 

scope of the parent task, it can be quite difficult to implement shared data between tasks. 

.We found that the only logistically workable program structure that employs the original 

distribution semantics is one which mimics a multi-program approach. Tasks would be 

distributed one to a processor, and they would be responsible for handling all interprocessor and 

VO communications. Within each encapsulating task would be a self-contained “typical” Ada 

program structure which uses packages freely to improve modularity and so forth. 

The basic problem with this strategy is that the addition or deletion of a processor 

necessitates massive program revision, since the program structure is effectively tied to a 

particular target architecture. This inflexibility is especially serious for fault-tolerant programs, 

since they must be designed to reconfigure themselves dynamically in response to arbitrarily 

occumng changes in the hardware configuration. 

A second structural problem results from the fact that no provision is made for use of 

software redundancy to reflect the underlying hardware redundancy. Although we do not 

advocate exclusive reliance on one-to-many mappings to support fault tolerance, we do recognize 

their utility in some contexts. For example, the cache of critical data items which must be 

maintained in order to allow recovery from arbitrary processor failure should be implemented as 

one data structure that is distributed to multiple memories. The reason for this is that this 

- 13 * 
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structure would only be written for the purpose of saving data for use after failure. The overhead 

associated with the redundancy is thenfore not extraneous or wasteful. since each new critical 

value must be broadcast to the other machines anyway. The big advantage to programming the 

critical data cache in this fashion is simplicity. In the approach, special tasks on each machine 

maintain their own uniquely named copies of the cache. What could be a single assignment 

operation if software redundancy were supported must instead be programmed as a series of 

rendezvous and assignments. 

A generally better approach to the partitioning of Ada programs is discussed in Comhill[3]. 

Briefly, the strategy allows for the distribution of most named constructs. The category includes 

tasks, packages, subprograms, named blocks, and objects (including both indexed and selected 

components). Neither accept statements nor named blocks that contain accept statements may be 

distributedt. 

The partitioning is expressed in a separate notation which is called the Ada Program 

Partitioning Language (APPL). The Ada program and the distribution specification constitute 

seps,-atc hixiis tcj a diskibiited Ada compiier. ine notauon can express static, dynamic, and 

one-to-many mappings of distributable program constructs onto the underlying architecture. The 

one-to-many mapping feature is intended to support fault tolerance. Together, copies behave as if 

there were only one instance of the given construct. The run-time support system ensures that the 

illusion is maintained correctly by invoking an inter-copy communication protocol whenever one 

of the copies communicates with another portion of the program. 

- 

We like the general philosophy of APPL. Because an APPL specification remains separate 

from the Ada program to which it pertains, a distributed program can be developed and tested 

without considering the details of the multicomputer which will execute it. We note that this 

t The assumption is that the internal synchronization of a usk should be the province of exactly one processor. 

- 14 - 
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approach has the disadvantage that the partitioning is separate yet the algorithm really needs 

information about the partitioning if it is to effect reduced service following failure. However, as 

long as full advantage is taken of the parallelism that is intrinsic to the algorithm, the resulting 

program can be executed with few changes on a wide range of distributed architectures. In fact, 

there are two circumstances in which changes might be necessary. 

Because APPL is a language in its own right, program-to-processor mappings which would 

be difficult to define using Ada pragmas and address clauses can be expressed cleady and easily. 

Because APPL takes an especially liberal view of what it means for an Ada program to be 

distributed, the expressive power of Ada is not limited by the multicomputer context. Excepting 

both accept statements and named blocks which contain accept statements, any named construct 

can be distributed separately. 

This notion of the liberality of APPL deserves some comment. In this research we focus on 

a tiny (but important) subset of the entire class of distributed applications for which Ada was 

designed. We must resist the temptation to define distribution and failure semantics which cater 

only to the concerns of people who develop crucial, real-time, fault-tolerant systems. Any 

general enhancements to Ada must be generally useful. Ada distribution semantics must be 

appropriate tools for the development of distributed Ada programs which need not tolerate node 

failure or run in real time as well as those crucial, real-time applications with which we are 

concerned. Similarly, Ada failure semantics should be useful for all programs which must 

tolerate partial hardware failure and not just those programs which face stringent real-time 

constraints. With a flexible, general form of Ada, constraints which are peculiar to a specific kind 

of application can be introduced at the design level. 

Figure 2 depicts this idea. Within the dottcd box are the areas of particular concern to us in 

this research. Outside of the dotted box is a list of at least two (hypothetical) strategies for the 

-15 -  
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Figure 2 - Research Concerns 

construction of other kinds of systems. The nonrcstrictive partitioning philosophy of APPL is 

maximally supportive of the widest range of distributed application programming. 

As a consequence, APPL does not, pending the experimental evaluations, appear to produce 

the structurally deficient programs which result from the distribution semantics described in 

Knight[2]. 

The problems we have with APPL relate mainly to our concern with fault tolerance, so we 

will address those issues in the next subsection, “Failure Semantics.’’ We are not concerned 

with the details of APPL; instead, we use the basic ideas presented in Comhill [3] as a starting 

point for the specification of a hypothetical Ada partitioning language. We assume the existence 
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of that language throughout this research, and we do not address the details of its implementation. 

We use the acronym HAPPL, for Hypothetical Ada Program Partitioning Language, to refer to 

this postulated language, and, because its differences from APPL result primarily from failure- 

related issues, we describe it in the next section. 

Failure Semantics 

e 

0 

0 

0 

a 
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Comhill [3] suggests that fault tolerance might be provided solely by judicious use of the 

APPL replication feature. We have noted previously two serious objections to this transparent 

approach: 

(1) No specification of service degradation. Since the application program has no 

way of learning of a failure event, it cannot respond to loss of computing power 

with a corresponding degradation in the level of services provided. This means that 

the system must be oversupplied with computing power in order to meet its 

deadlines after a failure. Such excess may not be feasible for applications with 

stringent power or physical space constraints. 

. 

(2) Excessive overhead. 

The APPL one-to-many mapping feature is not flexible enough to to serve adequately the 

entire class of fault-tolerant applications. In particular, many embedded systems have 

severe memory and execution speed constraints. Those systems cannot afford the overhead 

required by the automatic redundancy of the one-to-many mechanism; in fact, they cannot 

afford even to provide full service after a computer failure. 

In order to tolerate hardware failure, embedded systems with stringent real-time 

requirements must 

- 17- 
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(1) incur minimal fault tolerance overhead, 

(2) provide degraded but safe service after node failure, and 

(3) respond rapidly to failure events. 

0 

e 

0 

0 

0 

Although in theory it does allow for rapid response to failure, the so-called transparent fault 

tolerance implemented by exclusive use of the one-to-many mechanism is costly and does not 

allow for degradation. A less costly approach is one which recognizes that the minimum 

overhead needed for provision of fault tolerance is an application-specific quantity. For example, 

consider an array of critical data that is updated periodically in a loop. Any automatic 

mechanism for achieving data redundancy would necessitate a separate invocation of an 

interprocessor communication protocol for each update to each array element. We believe such 

overhead to be prohibitively high. What is actually needed is for the array to be broadcast to 

other processors after all of its elements have been updated. Concern for efficiency therefore 

dictates the imposition of some degree of application program control over the process of 

preparing for failure. 

In order to provide a different level of service following hardware failure, an application 

program must be aware of and must respond to the failure. Any scheme that purports to provide 

transparent fault tolerance capabilities with appropriate degradation simply by replicating some 

processes and data and not others is naive. The key problem is in communications between 

critical and non-critical portions of the program. If they do not provide for the possibility of 

failure, critical program parts will communicate unsuspectingly with parts that no longer exist. A 

hrther problem is that process replication promises to be hideously expensive. Making all copies 

of a dynamic, complex entity like a task behave as if there were only one requires substantial 

intra-copy communication. Given that overhead and degradation are such critical issues, we 

conclude that pure transparency, despite its advantages of portability and simplicity, is not 
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Unfortunately, since in a non-transparent approach failure is handled by the application 

program rather than by the run-time system, the rapidity of response is limited not only by the 

intrinsic constraints of the problem but also by the Ada language itself. In particular, Ada 

provides no mechanism (except for abort) by which one task may communicate unilaterally with 

another. 

In Cornhill [3], it is suggested that, for some applications, it may be necessary for the 

application program and the execution support system to exchange information about failures. 

The raising of an exception in response to an attempt to reference an object that no longer exists 

because of a node failure is offered as such a means of exchange. For real-time systems, this is 

insufficient because many such systems will need to reconfigure immediately in order to meet 

real-time deadlines. It may be unacceptably slow for a particular process to delay its 

reconfiguration until it attempts to communicate with the failed machine. 

In addition to supplementing Ada with a predefined exception for failed communication, we 

have suggested in our previous approach that the run-time system of each computer which 

remains after a failure call a predefined entry in a task devoted exclusively to the reconfiguration 

of that machine. This scheme has three major disadvantages. 

First, the one-per-node mapping of reconfiguration tasks binds the implementation to a 

particular computer architecture. Since one of the major reasons for distributed computing is the 

ease with which incremental changes in computing power can be effected, dependency of the 

software on one hardware configuration reduces substantially the utility of the system. 

Second, this strategy does not solve the aforementioned problem with rapid response. 

Because Ada does not allow one task to get the attention of another, some sort of polling 

mechanism must be used to propagate news of the failure to all processes. A polling rate which 
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would guarantee rapid response would also ensure inefficient operation. Alternatively, the abort 

statement could be used in conjunction with Ada’s dynamic tasking facilities: instead of 

informing processes of failure when they ask, the algorithm would be to abort all tasks which 

“really need to know” and restart replacements for them. We would very much like to avoid 

resorting to such an ugly, makeshift solution. 

Third, when a task is lost due to processor failure, its replacement must have a different 

name; consequently, all program units which made entry calls to the original task and need to 

make entry calls to the replacement must use the new name. It is appropriate to use a conditional 

statement which describes an actual change in behavior following a processor failure (see Figure 

3a); it is confusing to use conditional statements in order to use a different name to make the 

same entry call (see Figure 3b). 

We view the efficiency of non-transparent continuation and the capacity to specify degraded 

service to be absolutely essential to the applications with which we are concerned. The 

replication features of APPL may have some utility (easy data redundancy, hot standby 

yiuwssesj, bur ~ e y  are in generai too expensive for systems with tight real-time, memory, and 

physical space constraints. However, the specific approach in Knight [2] leads to programs which 

suffer from 

if BEFORE-FAIL then 

else else 

endif; endif; 

if BEFORE-FAIL then 
SERVER. CALL; SERVER. CALL; 

D O S  OMETHING-ELSE; ALT-SERVER.CALL; 

(a) CO) 
Figure 3 - Replacement Naming Problem 
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(1) poor modifiability, 
0 

(2) slow or inelegant failure response mechanisms, and 

(3) cumbersome naming of replacement tasks. 

e 
Our solutions to these problems are, in order, 

e (1) to use an APPL-like partitioning language to maximize distribution flexibility, 

(2) to replace one-task-per-computer entry call failure signalling with predefined 

exceptions to be handled by all tasks which must know of a failure event, 

0 
(3) to use resurrection, a feature of our APPL-like language, to provide name 

replication without the costs of redundancy. 

0 In the next subsection we describe the APPL-like language which we use to solve 

problems (1) and (3) above, and subsequently we define the the failure signalling 

mechanism that we use to solve problem (2). 

0 

Hypothetical Ada Program Partitioning Language ,mAPPL) 

e 

0 

Like APPL, HAF'PL allows partitioning to be effected along task, package, 

subprogram, named block, and object boundaries. Complex objects may be partitioned 

along both indexed and selected component boundaries. Distribution of a particular 

construct C to a processor X means that, excepting the portion of C which is in turn 

explicitly distributed to another processor, all execution and storage requirements of C 

shall be fulfilled by X. 

e 
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Unlike APPL, HAPPL requires partitioning to be static. The reason for this is to 

simplify the task of responding to a node failure. With static partitioning, the processes 

and data which are lost due to arbitrary failure of a given node are known at compile 

time, so the programmer does not need to handle the complexity of assessing arbitrary 

damage. 

For most kinds of interprocessor communications, static partitioning has interesting 

ramifications. For example, the meaning of a procedure call across processor boundaries 

is different from that of a local call. Intuitively, we think of procedures as being executed 

by processes which are in turn executed by processors. In Ada, tasks execute 

subprograms, and processors execute taskst. Given static partitioning, this paradigm 

cannot be applied to remote subprogram calls because it would imply migration of the 

calling task to the machine to which the subprogram was distributed. Instead, we must 

think of such calls as being executed by an agent on the remote machine. As its final act, 

the agent sends a message containing the results of the subprogram call to the actual 

calling task. The same idea works for remote data access, remote package instantiation, 

etc. From the perspective of the local task, remote access is, for each kind of 

communication, identical to local access. What makes agents useful, of course, is the 

resulting isolation of the calling process from the machine which executes the call. If an 

exception to handle failed interprocessor communication can be raised, failure of the 

called machine does not necessitate failure of the calling process. We define such an 

exception in the next section. 

0 

Besides static partitioning, the only other feature of HAPPL which does not exist in 

APPL is that of resurrection, which allows specification of one-to-many mappings which 

t Even the main program. a subprogram, is executed by 8 task. In section 10.1 of the LRM. it says. "Each main pro- 
gram acts as if called by some environment task." 
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do not incur the overhead (nor provide the substantial functionality) of APPL one-to- 
0 

many mappings. Basically, the stricture that copies behave as if they were actually a 

single construct is dropped. Instead, a resurrectable construct is a set of copies exactly 

one of which is active at a given time. When the machine executing the active copy fails. 

one of the dormant copies becomes active on one of the remaining computers. The 

application program is responsible, at the time of resurrection, for specifying the state of 

e 

e 

a 

e 

the newly activated construct. A resurrected data object, for example, initially will 

contain an undefined value, and access of that object prior to explicit post-failure 

initialization is erroneous. 

As mentioned above, the whole point of resurrection is to replicate names without 

the high cost of process or data redundancy. It is intuitively clear that this can be done 

easily and usefully for data. It is not nearly so obvious what resurrection of a process 

might mean or how it might be useful. 

To explore this issue, we need to make some general comments about the 

prugramming of recovery. 'The general approach to recovery is the following: 

Detect failure. Processor failure must be betectcd and communicated to the 

software on each of the remaining processors. 

Assess damage. It must be known what processes were running on the failed 

processor, what processes and processors remain, and what state the processes that 

remain are in 

Select a response. Information must be provided so that a sensible choice of a 

response can be made. This choice will normally depend on which processors and 

processes remain, but in many applications the choice will also depend on other 

- 2 3 -  
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variables, and their values would have to be known. 

(4) Effect the response. Once a response has been decided on, it must be possible to 

cany it out. 

d 

0 

0 

0 

0 

e 

Failure Signalling 

The only Ada construct which could allow al l  processes rapid access to the fact that a 

failure has occurred without binding software to particular hardware architectures is the 

predefined exception. Specifically, we designate an exception NODE-FAIL to be raised in every 

process which survives processor failure and has not suppressed the exception via the 

SUPPRESS-NODE-FAIL pragma to be defined below. That pragma may appear in task or 

task type specifications. In tasks whose specifications contain this pragma, the NODE-FAIL 

exception will not be raised. 

For those processes which must continue processing after a node failure but do not need to 

be interrupted, the exception COMM-FAIL is raised in every process which is suspended due to 

an p m ~ m p t  t~ mm-m-iAnjCzte \1;i* 2 f&:! c&. cxcep&fi io G i i y  i&s& if Gic ~ ~ U E S S  h a  

suppressed NODE-FAIL or has initiated the communication after processing the NODE-FAIL 

cxception. 

As described briefly above, a resurrection feature is available through HAPPL. Any 

partitionable Ada construct may be defined, via HAPPL, to be resurrectable. If a resurrectable 

Construct is on a machine which fails, the run-time system is obligated to instantiate a new 

construct of the same name on a specified node. Only one relationship is guaranteed to exist 

between failed and resurrected constructs of the same name and type: those constructs which 

execute as processes (tasks and the main program) shall execute the same NODE-FAIL 

exception handler as would the failed construct had its processor not failed. The effect of process 

constructs which suppress the NODE-FAIL exception and are defined to be resurrectable after 
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failure is undefined after such resurrection. Programs which contain such constructs are defined 

to be erroneous. 

The NODE-FAIL exception allows critical processes to respond immediately to failure. 

Those processes which do not need to respond to the failure event itself are protected by the 

COMM-FAIL exception. Such processes use the SUPPRESS-NODE-FAIL pragma to remain 

unaffected by the loss of a processor. The resurrection feature eliminates the need for 

programmed redirection of communication in program units which access remote portions of the 

program. Because a resurrected process or data object has the same name as the failed unit, 

program units which access it need not know of its failure. Compared to the APPL one-to-many 

mapping feature. resurrection incurs little overhead and is therefore more appropriate for general 

use in real-time systems. 

e 

e 
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SECTION 4 

EVALUATION CRITERIA 

0 

Our approach to evaluation in this research is to attempt to construct software in Ada that 

meets the specifications of a real-world system and also tolerates hardware failures. Analysis is 

performed during and after construction to determine the success or otherwise of the non- 

transparent approach. In order to judge systematically the quality of the solution, and hence the 

value of the design method itself to the chosen example application, we have defined two major 

criteria which must be satisfied by implementations of the application: they must be easy to 

construct and maintain, and they must be sufficiently efficient to satisfy the constraints of the 

application. We maintain that any implementation which satisfies the two criteria is indeed 

feasible and therefore encouraging of haher research. These criteria are intended to be general 

standards by which any non-transparent approach can be judged in the context of any application 

required to tolerate processor failure. 

e 

a 

The areas of concern are program engineering and run-time overhead. We do not at this 

time have a full-scale implementation for real-time testing. so our estimation of overhead is 

purely analytic and therefore somewhat suspect. Because of this limitation, we will in our 

evaluations focus most intensively on the program development and maintenance aspects of the 

problem; however, our bias does not reflect comparative disregard for execution-time efficiency. 

The two criteria must be deemed equally important, because both must be satisfied in order to 

judge the non-transparent method to be feasible. 

e 
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Development and Maintenance Issues 

e 

e 
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The extent to which fault-tolerant programs fail stylistically is of great concern, since the 

chosen fault-tolerance approach places much of the burden of recovery on the programmer, and 

the effect of that onus on a realistic program structure is unknown at this time. In order for fault 

tolerance to be feasible for Ada programs, those programs must be well-structured. 

The fundamental goal of the modem software engineering and language design strategies 

which inspired Ada is flexibility. People want three kinds of flexibility: 

(1) Software. When requirements change, programs should be easy to alter. 

(2) Personnel. Software development and maintenance should not be hampered 

unduly by personnel changes. Software should be readily understandable. 

(3) Target architecture. Software should be maximally independent of the computing 

system which executes it. 

Regarding (1) above, we expect that a fault-tolerant program will be more difficult to 

change than a program which implements the same “normal” requirements but does not 

continue after a node failure. Because fault-tolerant programs must contain code to specify both 

pre- and post-failure services, changes to the requirements often will result in changes both to the 

primary and to the alternate software. “his is not a serious problem, because a fault-tolerant 

program is a substantially more useful (and correspondingly more complex) product than one 

which is not. At the same time, if continuation causes a program to be more difficult to modify 

than one would expect (given the increased functionality of the fault-tolerant program), a 

substantial liability must be ascribed to the continuation facilities. 



a 

e 

0 

e 

0 

e 

Regarding (2) above, a similar argument holds. Only if new personnel found understanding 

a fault-tolerant program to be more difficult than understanding a non-fault-tolerant program of 

equal inherent complexity should continuation be viewed as a detriment to comprehensibility. 

The third kind of flexibility, independence from the underlying hardware architecture, is 

especially important for distributed systems?. A major reason for using distributed systems at all 

is to allow for efficient implementations of parallel algorithms. A number of competing issues 

arise: 

(1) minimization of inter-node traffic, 

(2) maximal exploitation of concurrency which is intrinsic to the algorithm, and 

(3) even distribution of the computing load among the nodes. 

Because of the obvious complexity, optimal partitioning is extremely difficult to achieve. The 

multi-program paradigm for distributed software requires that the basic partitioning decisions be 

made cez the stzt cf Chc devdopeiit precess, s~ sysierr~ designers must resort to educated 

guesses. In the event of a mistake, functions must be shuffled between programs. This can be 

tricky, since the programs do not necessarily provide interchangeable software environments to 

the functions which may be subject to redistribution. 
0 

A major reason for using a single program on a distributed target is to be able to delay 

partitioning decisions until the software has been constructed. A function that is written as a 

distributable entity can be moved to a different processor quite simply if the movement is within 

a single program. Theoretically, all that is required is a change to the distribution specification, 

recompilation, and relinking. In principle, then, an accurate, empirical approach to program 

tPortability, a major concern for all software systems, falls in this category of flexibility. but. as we stated earlier, we do not ex- 
amhe in this research the possible effects of cartinuation on portability. 
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partitioning can be employed without incumng massive development overhead. 

0 

0 

Another area of flexibility provided by distributed systems is the ease of incremental change 

in computing performance. If, during development, it is discovered that the estimate of required 

performance is incorrect, processors can be added or deleted as needed. Adding or removing a 

processor to or from a system incorporating non-transparent fault tolerance amounts to requiring 

the movement of several functions at once from one processor to another. It is important to 

ensure that non-transparent continuation does not reduce the flexibility of distributed systems to 

the point where useful flexibility is lost. 

Loss of the ability to move distributable entities from one node to another due to the need to 

survive hardware failure must be viewed as a serious negative in our evaluation of the proposed 

semantics. 

A final concern at development time, is the possibility that the inclusion of non-transparent 

continuation may so distort the desired form for a program that properties of programs in the 

software engineering sense, such as good modularity, information hiding, etc., might be lost. 

These are difficult properties to quantify and are, to a large extent, subjective, but any indication 

that these properties must be sacrificed for recovery would be serious. 

In general, the program engineering criterion is subjective and therefore an unattractive 

metric, but we believe it to be critically important. In an age when the Federal Government 

targets millions of lines of Ada code for crucial systems, we can ill-afford to neglect the very 

principles and techniques which make such a goal conceivable. Of special interest will be the 

task distribution flexibility, the overall complexity, and the ease with which modularization and 

object isolation techniques can be applied to the problem. 
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Run-Time Issues 
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At execution time, the major concern is overhead. The resources used by non-transparent 

continuation must not reduce overall performance to the point where real-time deadlines cannot 

be met. Both the application program and the run-time support systems (distributed one per 

node) will incur overhead in the areas of communications bus traffic, processor cycles, and 

memory. 

For the application program, the following are likely sources of overhead: 

bus traffic due to the need to distribute crucial data items to other machines in order to 

provide for recovery, 

processor cycles used for memory copy and I/O operations associated with data distribution 

and for the execution of conditional and select statements needed to choose between 

primary and alternate software, 

storage of crucial data items, extra conditional and select statements, alternate service 

software, reconfiguration software, data distribution software, code for resurrectable 

processes, and possible post-failure incarnations of resurrectable data items. 

For the run-time support systems, the following are sources of overhead: 

bus traffic due to interprocessor communication for failure detection and for 

implementation of the semantics of resurrectable processes, 

processor cycles used for maintenance of the message log [2] (to generate appropriate 

COMMUNICATION-FAILURE exceptions after a node failure), for failure detection, and 

for implementation of the semantics of resurrectable processes, and 

e 

0 
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e 

0 

(3) storage of the message log and the portion of the support system software needed 

spccifically to implement failure semantics, 

How much overhead is too much? The value of continuation depends upon the application, 

so each case should be considered independently; however, if the run-time processor cycle 

overhead were to approach fifty percent, we would look for another solution to the reliability 

problem. Memory overhead is not nearly as sensitive an issue, since the address space of most 

modem computers is huge, and memory components are quite inexpensive. Similarly, the level 

of extra bus traffic is not particularly important, since modem fiber-optic buses provide 

bandwidth far in excess of that needed by current systems. 

An issue related to overhead is response time. It must be possible for recovery to take place 

fast enough following the loss of a processor to ensure that the equipment being controlled does 

not suffer from a lack of service. There is a trade-off between overhead and response time. More 

time can be made available for the response if crucial data are distributed more frequently or if 

more data are deemed to be crucial. Also, the execution of certain alternate facilities even when a 

fzikirz h z  iicri crixUiieci iiiiiy decrease he time needed to make those faculties operational after a 

failure. 
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SECTION 5 
e 

DESIGN ISSUES 

e 

0 

The semantic enhancements proposed in section 3 provide the necessary tools for the 

programming of crucial, real-time, distributed systems. This section addresses the question of 

how those tools may be used to construct programs which measure up to modem software 

engineering standards. Two requirements are peculiar to fault-tolerant systems: ensuring the 

availability of crucial data after failure and configuring the post-failure system to provide a level 

of service which reflects the loss of computing power. In the remainder of this section, we show 

how each kind of service can be provided by the proposed semantics. 

Maintaining the System State 

e 

For most applications, in order to recover from a failure, some information about the state 

of the software on the failed machine must be available. Obviously, to withstand one processor 

failure, the state data must be stored on at least two nodes. For an automatic aircraft control 

system, for example, the current position of the aircraft, the status of the sensors, and historical 

information for the navigation integration filters are essential to timely recovery. It is also 

important that the information available to the application program represent an internally 

consistent state. For example, a flight plan which is a composite of two sets of contradictory pilot 

specifications is useless; an out-of-date but consistent flight plan could be quite useful. 

a 

a 

0 

0 

One solution might be to execute periodically a highest-priority process which collects all 

crucial data and stores it on two machines. Because Ada priorities are relevant across nodes only 

when inter-node communication occurs, processes on machines other than the one which 

executes the collection process may alter crucial items while the system snapshot is being taken. 
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Also, processes on the machine which executes the snapshot process could run while the snapshot 

process awaits response from another machine. Both cases violate the stricture that the snapshot 

be internally consistent. A rather clumsy way to solve this problem is to have the collection 

process start infinitely looping do-nothing processes on all machines. These processes would 

execute at a priority just beneath that of the snapshot process, so no “real” processes other than 

the data collector would execute until the do-nothing processes were aborted. This is a costly 

approach, since no useN work may proceed in parallel with the data collection; however, it is 

simple and unsusceptible to error. Since this strategy will work for any application, we call it the 

universal approach to maintaining the system state for recovery. The only impact data 

distribution has on the design of the rest of the program is in the visibility of crucial data--even 

strictly local items must be exported from the packages in which they are used. 

For applications which cannot tolerate the inefficiency of stopping all processes during 

crucial data acquisition, a variety of contextual techniques can be used. One would be to analyze 

the crucial data for specific time interdependency groups and to access those groups via critical 

sections only. The flight plan, for example, must be consistent only within itself--the time at 

which the sensor statuses were saved is irrelevant. Another technique would be to use the partial 

ordering of events which is apparent even in distributed, real-time software to decide whether or 

not particular crucial data should be protected by critical sections. Still another approach would 

increase efficiency by updating only those items which have changed or by updating items at 

different rates. 

We favor a hybrid approach in which no other work is done during the period needed for 

the snapshot and also in which distribution of data is performed at rates appropriate to the 

individual items and only when they have been updated. 
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e 
Specifying the Post-Failure Level of Service 

We have identified four ways in which one might choose to reduce safely the level of 

service provided by a program: 

e 

e 

0 

e 

e 

e 

e 

Eliminate non-critical functions entirely. 

Use faster but less accurate algorithms wherever the loss of accuracy is safe. 

Increase the length of one or more of the real-time cycles whereever the slower 

service is safe. 

Execute functions less frequently within a particular real-time frame whcreever the 

loss of speed or accuracy is safe. 

The two major advantages of non-transparent over transparent continuation are (a) control of 

overhead due to continuation and (b) the ability to specify a new level of service which is 

appropriate to the remaining computing power yet still safe. Obviously, the key assumption 

behind (b) is that real-time systems typically provide a level of service beyond that which is 

sufficient to avoid catastrophe. For (1) above to be applicable, it must be possible to divide a 

given application into critical and non-critical functions of which the non-critical functions are a 

significant percentage of the whole. 

For (Z), (3). or (4) to be applicable, there must be a substantial difference between the 

minimum real-time constraints which ensure safety and those which are met by the computing 

system. Such a difference can arise in three ways. First, a time slice in which frame overruns are 

not disastrous may be incorporated into a system in order to provide a margin of safety in the case 

of difficulties unforeseen by the software designer. Real-time systems are quite complex, and it 

seems unlikely that people typically will build them to meet their deadlines at the limits of safe 
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operation. Second, an intrinsic difference may exist between desirable and accepruble 

constraints. For instance. in an aircraft control system, a slower rate of computation of the 

positions of the control surfaces will not cause the aircraft to plummet to the ground; instead, the 

trajectory of the aircraft will become less smooth, and the passengers will be correspondingly less 

comfortable. Certainly, in the emergency situation created by loss of computing resources, 

comfort may justifiably be sacrificed in the interest of survival. Finally, the discrepancy may 

result from a common psychological phenomenon. From our own experiences, we note that 

people tend to use so-called “round” numbers whenever possible. For example, in the aircraft 

control system with which we are familiar the designers settled on a cycle length of ten 

milliseconds. It seems entirely possible, given what we suspect is a common human trait, that the 

ideal cycle length might actually be eleven, twelve, or even thirteen milliseconds. Further, it is 

unlikely that the ideal cycle length is less than ten milliseconds, since the aircraft would not fly 

.well if the computing system which controlled it did not perform its cyclical tasks fast enough. 

e 
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